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Abstract 

 
For several years we have been employing a risk-

based decision process to guide development and 
application of advanced technologies, and for research 
and technology portfolio planning. The process is 
supported by custom software, in which visualization 
plays an important role. During requirements 
gathering, visualization is used to help scrutinize the 
status (completeness, extent) of the information.  
During decision making based on the gathered 
information, visualization is used to help decision-
makers understand the space of options and their 
consequences. 

In this paper we summarize the visualization 
capabilities that we have employed, indicating when 
and how they have proven useful.  
 
1. Introduction 
 

The purpose of this paper is to report on our 
experiences using visualization to help in the early 
phases of project planning. This is the time when 
requirements are being determined, and planning is 
done for the entire development to follow. Key 
decisions are made, including: determination of 
purpose, from which stem detailed requirements; 
planning the rest of a system’s lifecycle, including 
subsequent development, testing, deployment, 
maintenance and future upgrades; allocation of 
resources to those phases (e.g., budget, schedule, 
testing platforms), and the determination of the 
architecture and early phase design. 

Our experiences suggest that there is a non-trivial 
amount of information available even during the 
earliest phases of the lifecycle. This information comes 
from many sources (“stakeholders” in the parlance of 
the software community) – the customers, funders, 
managers, developers, users, etc. Information may take 

the form of guidance extracted from past experience, 
coupled with experts’ best estimates in the face of 
novel aspects of the effort. Novelty stems from new 
applications, new circumstances, new hardware and 
software resources, new development methodologies, 
etc.  

Decision making during these early phases remains 
a predominantly human activity, but one which can and 
should be well-informed by this wealth of available 
information. Visualization can play a prominent role 
by portraying the information in ways that make it 
amenable to extracting key insights, and open to 
scrutiny so that the information basis for the decision 
making is clear. 

This paper illustrates our work in this area, based on 
a novel but effective approach to employing 
quantitative reasoning during the early phases of 
system (software and/or hardware) developments, and 
technology planning. We have previously published on 
various aspects of this work, references to which 
appear within the paper. Here we focus on how use of 
visualization plays a crucial role throughout.  
 
2. Basis for our work 
 
2.1. Fundamental concerns of early-lifecycle 
decision making 

 
Our work takes place in the context of early-

lifecycle planning of complex system developments. In 
particular, our focus is on spacecraft and spacecraft 
technologies, both software and hardware, in their 
early phases of development. Although this may seem 
an esoteric application area, the concerns that dominate 
early-lifecycle decision – cross disciplinary effects, 
resource constraints, need for reliability, and novel 
aspects of the problem – are common to many 
domains. In more detail, these concerns are as follows: 
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• Cross-disciplinary concerns (e.g., navigation, 
propulsion, telecommunications).  These concerns 
are cross-coupled and interact in multiple ways 
(e.g., electromagnetic interference, heat transfer).   

• Severe constraints on the systems being developed 
and on the development process itself. Time and 
budget pressures constrain development; 
operational resources constrain the resulting 
system (e.g., mass, volume, power).   

• Reliability issues. Spacecraft are critical systems 
that must operate correctly the first time in only 
partially understood environments, with no chance 
for repair. 

• Unknowns: past experience provides only a partial 
guide when new mission concepts are to be 
enhanced and enabled by new technologies of 
which past experience is lacking. 

Because of this combination of challenging aspects, 
invariably no one person has expertise that spans all 
the disciplines, or can simultaneously juggle all the 
factors involved in large and complex designs. 
Furthermore, much of the design skill is tacit 
knowledge in the heads of experts, so it cannot be pre-
encoded in an automated tool. Our response has been 
to follow a process in which we convene experts, elicit 
the relevant knowledge from them, capture it in a 
simple but agile model, and use this amalgamated 
information to help those experts make decisions.  We 
describe this process next.  

 
2.2. A risk-based approach to assist 
requirements-time decision-making 

 
Use of cost-benefit models for prioritizing software 

requirements was convincingly advocated in Karlsson 
and Ryan [14]. In their original concept, each 
requirement was scored in two dimensions – how 
much benefit that requirement would convey, and how 
much it would cost to implement. In our setting we 
have found that requirements are highly intertwined 
with the designs that can be contemplated to (partially) 
satisfy them. We therefore use a model from which 
cost and benefit can be derived. The model is then used 
to guide decision-making, e.g., to select from among 
alternative designs.  

Our model uses a concept of Risks to interpose 
between requirements and designs, the latter being 
composed of choices among alternative ways to quell 
risks. This is somewhat reminiscent of van 
Lamsweerde & Letier’s notion of Obstacles in Goal-
Oriented Requirements [22], however, our model uses 
more quantification and less logical substructure. Our 
model is called Defect Detection and Prevention 
(DDP), the name reflecting its origins as a method 

intended for quality assurance planning of hardware 
systems [5]. In more detail, a DDP model is populated 
by instances of three kinds of concepts: Requirements 
– what it is that the system or technology is to achieve, 
Risks – what could occur to impede the attainment of 
the Requirements, and Mitigations – what could be 
done to reduce the likelihood and/or impact of Risks1. 
In the DDP model these instances have quantitative 
attributes: each Requirement has a weight, its relative 
importance; each Risk has a likelihood, its probability 
of occurrence, and each Mitigation has a cost, the cost 
of performing it – usually a financial cost, but other 
resources can also be considered, such as schedule, 
power, mass. Quantitative relationships connect these 
instances: Requirements are related to Risks, and Risks 
are related to Mitigations. Specifically, Requirements 
are related to Risks to indicate how much each Risk, 
should it occur, impacts (i.e., detracts from the 
attainment of) each Requirement. Risks are 
quantitatively related to Mitigations, to indicate how 
much of a Risk-reducing effect a Mitigation, should it 
be applied, has on reducing each Risk, either by 
decreasing the Risk’s likelihood, or by reducing the 
magnitude of the Risk’s impacts on Requirements; the 
nature of the Mitigation dictates which kind of 
reduction takes place. 

The majority of DDP applications to date have been 
in the area of technology infusion [9]. DDP has proven 
helpful to clarify the definition of the mission 
requirements that the candidate technology will satisfy, 
and to identify and address early on the technology-
specific engineering difficulties that may result from 
alternative technology/mission architecture decisions. 

 
2.4. DDP models 
 

A DDP model typically consists of dozens of 
instances of each of the three concepts (Requirements, 
Risks and Mitigations), and hundreds of linkages 
among them – Impacts link between Requirements and 
Risks, and Effects link between Risks and Mitigations.  

This quantity of information, its convoluted nature, 
and its origins in the various discipline areas of 
spacecraft development, combine to make decision-
making challenging. Especially problematic is the 
selection of Mitigations. In almost all applications the 
total cost of all the identified Mitigations far exceeds 
the resources available, necessitating the careful 
selection of which of them to perform. We find that 
                                                        
1 On occasion we use alternate terminology such as 

“Objectives” in place of “Requirements”, “Failure Modes” 
in place of “Risks”, and “PACTs” – an acronym for 
Preventative measures, Analysis, process Controls, and 
Tests – in place of “Mitigations”. 



spacecraft experts, guided by their skill and past 
experience, generally make intuitive selections that are 
good. However, there is often some problematic area 
that use of the DDP model reveals. Visualization plays 
a prominent role by portraying the information in ways 
that make evident such problematic areas. DDP’s 
capabilities in this regard are presented in the sections 
that follow. 

 
3. Scrutinizing a candidate’s status 

 
3.1 Straightforward bar-chart visualizations 

 
DDP uses straightforward bar chart visualizations to 

convey the status of an individual set of requirements 
and candidate decisions to achieve them. DDP 
generates bar charts to show: 
• Requirements – each bar represents a 

Requirement, displaying its relative importance, 
and its degree of attainment in the current design. 

• Risks – each bar represents a Risk, displaying its 
sum total expected impact on Requirements, both 
without any Mitigations (the worst case), and with 
the design’s selection of Mitigations. 

• Mitigations – each bar represents a Mitigation, 
displaying its expected risk-reducing effect. 

An example of DDP’s bar chart visualization of 
Risks’ status is to be seen in Figure 1,. Each bar 
corresponds to a risk. The height of the bar indicates 
the sum total expected impact the risk causes – the 
height of the green portion indicates its sum total 
impact were no Mitigations to be selected, while the 
height of the red portion indicates its sum total impact 
taking into account the effects of the design’s selection 
of Mitigations. The number beneath each bar is a 
reference to the corresponding risk in a list of such. 

 
Figure 1. Bar chart of Risks’ status 

The bar chart shows that some of the Risks remain 
at relatively high levels, while some others have been 
reduced to relatively low levels. Note that the vertical 
scale is logarithmic, so the disparities are quite 
pronounced. This simple visualization is adept at 
revealing unbalanced treatment of risks: excessive 
resources expended to reduce some risks to tiny levels, 
while other significant risks remain relatively 
unaddressed. 

DDP is also able to track ranges of quantitative 
values (e.g., the experts’ estimates of effectiveness of 

requirements inspections at uncovering ambiguously 
worded requirements might range from 60% to 80%). 
A variant of the bar chart display showing such ranges 
is seen in Figure 2. 

 
Figure 2. Ranges of risks 

This kind of visualization is useful to point out the 
consequence of uncertainties in the input data on the 
computed values.  

DDP also offers the capability to sort the bars (e.g., 
in descending order of mitigated risk), and to group 
and/or color-code the bars with respect to user-defined 
partitioning of risks into categories. Again, these are 
straightforward kinds of manipulations typical of bar 
chart displays. 

 
3.2. Alternate visualizations 
 

We have also experimented with using a form of 
TreeMap visualization [2] to present status 
information. An example appears in Figure 3. 

Figure 3. Treemap display of requirements 
As is common in using TreeMap like displays, 

position, size and color are used to convey different 
aspects of the information. Here these are used as 
follows: 
• Position represents the requirements hierarchy; 

sub-requirements of the same grouping appear as 
smaller rectangles within a larger rectangular area 
representing that grouping.  

• Size represents the relative importance of the 
requirement or group of requirements it represents.  

• Color represents the attainment status of that 
requirement, where color ranges from yellow, 
indicating a proportion attained of zero, to green, 
indicating a proportion attained of 1.0. 



Thus a large yellow area would indicate an 
important but unattained requirement. This makes it 
easy to see the extent to which a given design satisfies 
the important requirements. This same information can 
be gleaned from a bar chart, but the TreeMap display 
often appears more effective as a means to convey this 
information. 

For understanding how risks are distributed across 
the likelihood / impact (a.k.a. severity) dimensions, we 
use a 2-D chart layout, as seen in Figure 4. 

 
Figure 4. 2-D chart of risks 

Each risk is represented by a small black square, 
located with respect to the chart’s two axes, 
representing likelihood (vertical) and impact 
(horizontal). The dotted lines from each black square 
lead to the risk reference number, identical to that used 
in the bar chart display. 

 
4. Comparing the details of alternates  

 
When deciding among alternate design candidates it 

is useful to be able to scrutinize their details. For 
typically sized DDP models, computing and drawing 
the display takes less than a second on a 1GHz laptop 
for a design’s selection of Mitigations. This makes is 
easy for users to try what if scenarios of alternates, and 
use the displays shown in the previous section to 
scrutinize each one. 

In addition, DDP can generate bar charts that 
display the differences between a pair of designs. An 
example is seen in Figure 5. 

 
Figure 5. Comparing two designs' risks 

This figure shows a comparison of the risk status of 
two designs. The baseline design is the one shown 
earlier in Figure 1; an alternate design is being 
compared against it. Black indicates where a risk has 
increased with respect to the baseline, and yellow 
where a risk has decreased. 

For comparison among several designs, we have 
found that a Kiviat chart is appropriate to 
simultaneously display up to about half a dozen at 
once. Figure 6 shows an example. 

 
Figure 6. Kiviat chart of several designs' risks 

On this chart each spoke represents a risk. Each 
design’s status is indicted by a polygon whose edges 
are in a color corresponding to that design. The 
polygon’s vertices are positioned along the spokes to 
indicate risk magnitude by distance from the center. As 
before, dotted lines connect risks to their reference 
numbers. 

 
5. Understanding the solution space  
 

Finding a desirable selection of Mitigations can be 
challenging, because of the number of Mitigations 
from which to select, and the convoluted nature of the 
way that Mitigations connect to Risks, and Risks 
connect to Requirements. If there are n mitigations, 
then there are in principle 2n possible selections from 



among them. To solve this, we implemented simulated 
annealing [16] within DDP, and use it to locate near-
optimal solutions. We have also explored other forms 
of heuristic search: genetic algorithms and machine 
learning [6].  

We use visualization to convey the results of such 
searches, as seen in Figure 7. This plots the result of an 
amalgam of searches, revealing the overall cost-benefit 
tradespace. Each of the approximately 300,000 
individual points in the black cloud corresponds to a 
distinct selection of Mitigations. The DDP model has 
been used to calculate the cost and benefit of each such 
selection, and draw a small black point corresponding 
to the solution: cost determines horizontal position; 
benefit vertical position. The upper-left frontier of the 
cloud is thus the optimal boundary, also referred to as 
the Pareto front [19]. Note that while the simulated 
annealing search is designed to concentrate towards 
this optimal boundary, we plot a point for every 
selection investigated by the search, not just the near-
optimal points on that boundary. 

For this paper we have annotated the plot to indicate 
distinct regions on the Pareto front. Points within the 
interior are all inferior to more optimal solutions, of 
course. If the budget is low, the optimal solutions fall 
within the region where small amounts of additional 
funding can lead to radical improvements (i.e., better 
attainment of Requirements). Conversely, if the budget 
is high, optimal solutions fall within the region where a 
law of diminishing returns operates. The ideal is to be 
somewhere in the sweet spot region. If the budget is 
too small to allow this, such a plot can motivate either 
a request for a budget increase, or serious consideration 
of descoping (reducing expectations) to be more in line 
with the available budget. 

 
Figure 7. Cost-benefit tradespace chart 

Sometimes the cost-benefit tradespace has a much 
more granular structure, representing different regimes 
of solutions at different expenditure levels.  

Overall we find this kind of plot cogently reveals 
the overall cost-benefit tradespace, information that 
supports managerial decision making (e.g., can we 

afford this development? is the funding level 
appropriate to the problem?).  

 
6. Exploring the solution space 
 

Early in a project lifecycle a plethora of options are 
available. We find this to be the case when we 
scrutinize the results of our use of heuristic search to 
reveal the cost-benefit tradespace. Even when the users 
narrow their attention to a relatively small area in the 
tradespace there can be thousands of alternative 
solutions. This is illustrated with reference to the cost-
benefit tradespace shown in Figure 7. Suppose we 
focus on a neighborhood of interest within the sweet 
spot characterized by solutions costing no more than 
$1,000,000, and by attaining at least 95% of the 
maximum benefit attainable within that region – see 
Figure 8.  

Cost upper 
bound of 
$1,000,000

Within 5% of 
max benefit 
attainable for 
$1,000,000

$1,000,000

$1,000,000

 
Figure 8. Neighborhood of interest 

Within the dataset that gave rise to this picture, 
there are over 3,000 solutions, each of which is a 
distinct selections of Mitigations. Many of these will 
be similar – from one to the next, they may differ by 
only one or two low-cost, low-benefit Mitigations. 
However there may be some radically different 
solutions present within that same region. We have 
experimented with several techniques to explore such 
regions. Again, we use a mix of computational power 
to automate the exploration, and appropriate use of 
visualization to reveal interesting implications, 
discussed next. 

 
6.1 Determining Key Decisions 

 
A desirable thing to know is which decisions are 

key that is, make a significant difference to the 
outcome. In our context, an individual decision is 
represented as whether to select a Mitigation. Recall 
that each Mitigation represents a design or 
development option, so these decisions translate into 
design or development choices. 



Methods for identifying key decisions have been the 
focus of one of this paper’s authors (Menzies) for 
several years [17]. In collaboration we have studied 
their use within DDP [11]. Briefly, the study involved 
several iterations between the DDP tool, and the 
treatment learning tool. Each iteration revealed some 
additional key decisions – Mitigation selections and 
avoidances (ones to not select). In our study, the 
process terminated when decisions about one-third of 
the Mitigations had been identified, the result of which 
was convergence on a small area within the cost-
benefit tradespace. The remaining two-thirds of the 
Mitigations turned out to be such small contributors to 
variation that the treatment learning approach could not 
discern any particularly key remaining decisions 
among them.  

We use visualization to convey the overall 
consequences of this, as seen in Figure 9.  

 
Figure 9. Convergence as iterations identify 

key decisions 
The convergence towards the compact (red colored) 

zone of high benefit solutions is strikingly apparent. 
(Note that this figure is generated from a different 
model to that underpinning the other cost-benefit 
figures, so do not try to compare them.) The net result 
is knowledge of how to get to a desired area in the 
search space by having identified the subset of the key 
decisions and how to make them. The visualization 
serves to convince the viewers of the efficacy of that 
key decision set. 

 
6.2 Understanding individual decisions’ 
contributions 

 
We have also experimented with a purely 

visualization-based approach to understanding the 
contribution of individual decisions [7].  

Given the set of points of that constitute a cost-
benefit tradespace, for a Mitigation of interest, we 
color each point one color (black, say) if that point 
corresponds to a solution not involving use of that 
Mitigation, and another color (yellow, say) if it does 

involve use of that Mitigation. An example is in Figure 
10.  

 
Figure 10. Contribution of an individual 

mitigation 
The broad swathe of yellow points that dominate a 

large fraction of the Pareto front indicate that the 
chosen mitigation is key to nearly all optimal solutions 
above a certain cost level. 

Repeating this for each Mitigation we can gather a 
snapshot of their contributions, seen in Figure 11. The 
four groupings therein correspond to the four major 
user-defined categories into which these 58 Mitigations 
were organized. 

 
Figure 11. Snapshots of each Mitigations' 

contributions 
We have since learned of the visualization tool 

ATSV [20] which uses a combination of techniques, of 
which color is just one, to show multiple dimensions of 
the attributes of a design simultaneously. We are 
currently investigating its use on our datasets, and the 
preliminary results so far are very promising. 

 
6.3 Identifying interesting alternatives 

 
We have also exploring means to distill information 

from the many solutions that lie within a neighborhood 
of interest. Our approach to this has been based on a 
definition of a metric of similarity between two 
solutions (i.e., selections of Mitigations). This metric is 
user-defined in terms other than overall cost and/or 



benefit of a solution, since all the solutions are within a 
small neighborhood of similar costs and similar 
benefits. One useful metric might be based on the cost 
profile – how the costs fall into major categories. For 
example, in a hardware-centric study we did, there 
were categories of design, fabrication, assembly and 
test;  two solutions that had the same overall cost but 
allocated that cost very differently between those 
categories would be very dissimilar. 

Using such metrics we have explored the use of two 
techniques: (1) Search for maximally dispersed 
solutions within the neighborhood of interest. The idea 
of this is to yield a small number of interestingly 
distinct solutions [10]. (2) Search for clusters of similar 
solutions. The idea of this is to yield a small number of 
interestingly distinct clusters, within each of which all 
the solutions are relatively similar to one another [15]. 
For both of these, we again turn to visualization to 
present the results. 

The visualization of a modest number of dispersed 
solutions is seen in Figure 12. The union of Mitigations 
involved in one or more of those solutions form the 
rows. The grid at the left is used to indicate the distinct 
solutions, one per column. A black (white) cell 
indicates that the Mitigation of that row is included 
(not included) in the solution of that column. 
Mitigations that are common to all solutions have been 
filtered out of this table to be listed separately (not 
shown here), so what remains is a portrayal of the 
differences among solutions. In this case the 
Mitigations are sorted in descending order of their cost. 
From this, it is easy to see that 8 out of 10 of the 
solutions include a $200,000 Mitigation, while 2 of 
them avoid its use. This is a significant difference 
given that the sum total cost of each solution is capped 
at $1 million. 

The visualization of clusters is similar, seen in 
Figure 13. Rows correspond to Mitigations, while in 
this portrayal columns correspond to clusters. Since a 
cluster itself comprises multiple solutions, a given 
Mitigation may be involved in none, some or all of the 
solutions in a cluster. This is indicated by shading the 
square – white means not involved in any of the 
solutions within that cluster; black means involved in 
all the solutions within that cluster, and intermediate 
shades of grey denote intermediate levels of 
involvement. 

 
Figure 12. Visualization of 10 dispersed 

solutions 
 

 
Figure 13. Visualization of clusters of 

solutions 
 

 



7. Investigations of research and 
technology portfolios 
 

In addition to applications of DDP to assist the 
infusion of individual technologies, in some cases there 
have been DDP applications that have focused on 
entire portfolios of technologies, the aim being to make 
a selection of a set of technologies to pursue. The first 
of these was conducted by JPLer David Tralli, who 
used DDP to assist activity selection across an entire 
program of NASA Earth Science Missions [21].  

We have since used this same approach in a pilot 
study of the connections between the needs of software 
Independent Verification and Validation (IV&V) 
practitioners and a related software assurance research 
program containing multiple research efforts [12]. The 
purpose was to gauge how well the research program 
matched practitioner needs. In our pilot study, based on 
a partial set of data, we used DDP’s visualization of the 
topology of connections between Requirements, Risks 
and Mitigations to present the data – the result is seen 
in Figure 14. 

 
Figure 14. Topology of Needs-Areas-

Researchers 
The top row represents 9 IV&V practitioners. They 

were asked to express their needs in terms of the 198 
leaf nodes in the software area of the ACM Computing 
Classification System [1]. These 198 leaf nodes form 
the middle row, and red lines connect practitioners 
with their expressed needs. The bottom row represents 
19 researchers who were asked to express their 
research in terms of the same 198 leaf nodes in the 
software area. The green lines connect researchers to 
the areas they work in. 

We have annotated the DDP-generated chart with 5 
ellipses, each exemplifying a different phenomenon: 
1. Very good overlap between areas of need shared 

by multiple practitioners and those same areas 
included in multiple researchers’ activities. 

2. An area of potentially over-addressed needs. Only 
one practitioner has expressed needs in these 
areas, yet multiple researchers have activities in 
these areas. 

3. Unaddressed needs shared by several practitioners. 
4. Unaddressed needs of a single practitioner. 

5. Good overlap – areas shared by several 
practitioners and covered by several researchers. 

Furthermore, our data included quantitative 
estimates, of the relative importance of a practitioner’s 
needs, and the relative levels of effort of a research’s 
activities.. This quantitative data allowed us to utilize 
DDP’s risk calculations, but in this model instead of 
Requirements impacted by Risks we had we had 
Practitioners with needs for improvements in Areas of 
Computer Science, and instead of Risks effected by 
Mitigations, we had Researchers potentially 
contributing to progress in those Areas of Computer 
Science.  

To show the quantitative aspects, we couple the 
topology visualization with the bar chart visualization. 
This is seen in Figure 15.  

 
Figure 15. Topology coupled with bar chart 

 
Figure 16. Fulfillment of needs from several 

research efforts  
The red bars indicate sum total need in each of the 

areas, the higher the bar, the more need; again, bar 
heights are with respect to a log scale, so the 
differences are quite pronounced. 

The extent to which researchers’ activities 
contribute to the practitioners needs can be calculated 
and displayed, as seen in Figure 16.  This figure shows 
the status when the left three research activities are 
selected, identifiable by their connecting lines colored 
green. DDP has calculated their combined effect at 
meeting practitioners’ needs. The bar chart colors of 
red and green indicate, respectively, unfulfilled need, 
and need fulfilled by the currently selected researchers.  



This topology visualization appears very well-suited 
to revealing these phenomena in this particular model, 
particularly when coupled with the bar chart display. 
 
8. Conclusions and related work 

 
The purpose of this paper has been to illustrate the 

application of software visualization to the earliest 
phases of the development lifecycle.  

We have illustrated this with examples taken from 
our studies of spacecraft technologies and systems, 
spanning software, hardware and combinations of both. 
All figures in this paper are generated by this software, 
and all are based on actual models constructed in the 
course of our work. 

 
8.1 Observations 
 
• The requirements phase, when many key decisions 

are made on the basis of partial information, is a 
ripe area for use of visualization. 

• We have not found one single visualization 
technique that will serve all purposes – instead we 
use a mix of several. 

• We make use of relatively simple, commonplace 
visualizations: bar charts, 2-dimensional scatter 
plots, TreeMap, connection graphs and tabular 
formats. These have proven sufficient for many of 
our needs. 

• Which visualizations to use and when is closely 
coupled to the model and data. Our highly 
quantitative model favors use of bar charts etc. to 
present status of items, and a fixed layout for the 
topology of the connections in our model (e.g., 
Figure 14) suffices. By way of contrast, the goal 
graphs of van Lamsweerde and Letier [22] are 
more general graph structures, presenting greater 
need for graph layout capabilities. 

• Visualization and computation can complement 
one another (e.g., search for interesting 
alternatives  was followed by visualization to 
show their makeup – section 6.3)  

 
8.2 Related work 

 
Karlson & Ryan’s pioneering work on requirements 

prioritization [14] looked into the challenges of 
selecting the set of requirements to go into the next 
iteration of development or release of a product. The 
approach is based on gathering estimates for each 
requirement of its cost and benefit. Visualization in the 
form of a 2-dimensional chart presents the cost vs. 
benefit position of individual requirements, thus 
allowing users to select accordingly. Similar 

approaches are seen in the Win Win project [3] which 
supports multiple stakeholders to identify conflicts 
between their respective evaluations of requirements, 
and to locate feasible solutions that are mutually 
satisfactory combinations of requirements. Again, 
visualizations in the form of 2-dimensional charts are 
used, provided by the automated aids built to support 
this approach [13]. Regnell et al use of bar and pie 
charts for similar purposes [18]. By way of contrast, 
we do not feel able to ascribe directly to a requirement 
its cost and benefit – rather, we use our three-layer 
Requirements, Risks and Mitigations model to capture 
the more intertwined dependencies that we find arise in 
many of our studies. Also we deal with larger numbers 
of items – many dozens, sometimes hundreds – for 
which there is need for additional mechanisms to sort, 
elide, filter etc. Again, relatively simple such 
mechanisms appear to suffice. 

Our display of the Pareto front to visualize the cost-
benefit tradespace is commonplace in the typically 
non-software design optimization world [19].  The use 
of heuristic search techniques as a tool of optimization 
of software engineering problems is discussed in 
Clarke et al [4]. That article surveys past applications 
of heuristic search in areas of test data generation, 
module clustering and cost/effort prediction, and 
considers potential applications in additional areas. 
Interestingly, one of the areas they consider is the 
aforementioned requirements prioritization problem. 
Their focus, however, is on matching software 
engineering problems to heuristic search methods in 
order to be able to apply those methods. They do not 
continue to the point where the search results must be 
presented to users, and so are not motivated to consider 
issues of visualization in support of this. 
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